
Optimization of a Pressure-Swing Adsorption Process Using Zeolite
13X for CO2 Sequestration

Daeho Ko,† Ranjani Siriwardane,‡ and Lorenz T. Biegler*,†

Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, Pennsylvania 15213, and U.S. Department of Energy, National Energy Technology Laboratory,
3610 Collins Ferry Road, Morgantown, West Virginia 26507

A pressure-swing adsorption process, which uses zeolite 13X as an adsorbent to recover and
sequester carbon dioxide from mixture gas (nitrogen and carbon dioxide), is investigated through
dynamic simulation and optimization. The purpose of this paper is to improve the purity of
each component by finding optimal values of decision variables with a given power constraint.
Langmuir isotherm parameters are calculated from experimental data of zeolite 13X and a
general mathematical model consisting of a set of partial differential and algebraic equations
and solved in gPROMS. The method of centered finite differences is adopted for the discretization
of the spatial domains, and a reduced space SQP method is used for the optimization. As a
result, the optimal conditions at cyclic steady state are obtained.

1. Introduction

Adsorption processes have been suggested as an
alternative to traditional separation processes such as
distillation and absorption. Gaseous species are ad-
sorbed preferentially on solid sorbents, and when the
adsorbent is saturated, a thermal-swing adsorption
(TSA) or a pressure-swing adsorption (PSA) method is
employed for the regeneration under the condition of
continuous periodic operation. In the PSA process, the
adsorbent is regenerated by quickly decreasing the
partial pressure of the adsorbate, i.e., reducing the total
pressure using a purge gas. With this PSA technology,
binary-component and multicomponent gas mixtures
are commercially being separated.1,2 For environmental
applications, one of the most promising applications of
PSA is to recover and sequester CO2 from flue gas
streams. One way to improve the efficiency of the
process is to adopt a suitable adsorbent; the other is to
find optimal values of design and operating variables
of the process. Design variables include the choice of
sorbent as well as the bed length and diameter, while
operating variables include the feed pressure and
operating step times. However, the optimization proce-
dure does not deal with control issues for the PSA
process. Here separate control strategies need to be
developed in order to stabilize the process and to
maintain it at the desired operating points. These are
discussed in Bitzer and Zeitz.3

In this study we select zeolite 13X as an adsorbent to
sequester CO2 and optimize the PSA process because it
has a high efficiency of separation and requires low
power for CO2 sequestration. Many studies have dealt
with the simulation and optimization of adsorption
processes. These systems require the solution of partial
differential algebraic equations (PDAEs) to model ad-

sorption in each bed, enforcement of periodic boundary
conditions to describe cyclic steady states (CSSs), and
the determination of optimal design and operating
variables. Croft and Levan4 presented a simulation
method for the direct determination and stability analy-
sis of periodic states of adsorption cycles. Similarly,
Kvamsdal and Hertzberg5 investigated different meth-
ods to accelerate cyclic steady-state convergence such
as Aitken, Muller, and Broyden based updating schemes
as well as a damped Newton-based approach. To deal
with optimization, Smith and Westerberg6,7 considered
the cyclic operating schedule of a PSA system as a
mixed-integer nonlinear program (MINLP) that was
simplified to a mixed-integer linear program (MILP);
they determined the optimal values of the number of
beds, the desired operation, the scheduling of those
operations, and the operating conditions.8 Nilchan and
Pantelides9 proposed the complete discretization (CD)
method for the optimization of PSA and rapid PSA
(RPSA) processes. A CD, sometimes called simultaneous
discretization, that discretizes both the spatial and time
domains has been applied to adsorption processes.9-14

Lewandowski et al.15 developed a method using neural
networks for the simulation and optimization of a PSA
process. Jiang et al.16 optimized a PSA system by using
a direct determination method by implementing a
Newton-based approach to accelerate convergence for
CSSs.

However, little has been published on the optimiza-
tion of PSA processes using zeolite 13X for CO2 seques-
tration. This work concentrates on the dynamic simu-
lation and optimization of a bench-scale PSA system
with zeolite 13X as the adsorbent, to remove CO2 from
mixture gas consisting of N2 and CO2. The feed compo-
sition is 15% CO2 and 85% N2. The mathematical model
including the adsorption rate, mass balance, and heat
balance influenced by adsorption heat has been formu-
lated for a four-step operating PSA cycle (pressurization,
adsorption, depressurization, and regeneration) in a
single bed, as shown in Figure 1. The selected adsorbent,
zeolite 13X, is very good at separating CO2 from the
mixture gas consisting of N2 and CO2. Pure gas adsorp-
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tion isotherm parameters are calculated from experi-
mental data,17 and the Langmuir equation for mixture
gas isotherms is used to describe the competitive
adsorption behavior in this work. This study considers
the optimization of PSA at CSS by using a single
discretization (SD) approach that discretizes just the
spatial domain; hybrid features in the gProms allow
switching of the boundary conditions associated with
modeling of different operating steps in the cycle. As
demonstrated, the adopted methodology is more reliable
than the CD method for the optimization of cyclic ad-
sorption processes in the gProms19,20 modeling system.

The next section summarizes the modeling and opti-
mization strategy. Here we present the process model,
the constraints for the optimization problem, and the
discretization method. Section 3 then presents the
numerical results for the optimization problem, while
section 4 concludes the paper.

2. Process Description and Model

We consider a PSA cycle with beds packed with zeolite
13X as an adsorbent and operated with four steps:
pressurization, adsorption, depressurization, and de-
sorption (Figure 3). During the pressurization step,
high-pressure feed gas consisting of 85% N2 and 15%
CO2 at ambient temperature is supplied to the bottom
of the bed. During the adsorption step, CO2 is adsorbed
on a fixed adsorbent (zeolite 13X), N2 is obtained as
a product at the top of the bed, and the high-pressure
feed gas enters the bed continuously as in the pres-
surization step. During the depressurization step, CO2
starts being recovered. The desorption step also obtains
CO2 at the bottom of the bed, and N2 at ambient
pressure is employed as a purge gas. The target process
of our current work is bench scale, and the design
specifications and simulation conditions are listed in
Table 1.

2.1. Model Equations. The following assumptions
are used for the PSA modeling and simulations.

1. All of the gases follow the ideal gas law.
2. The axial pressure gradient is expressed by Darcy’s

law.
3. The radial variation of variables such as temper-

ature, pressure, and concentration can be neglected.
4. The superficial velocity is constant through the bed

during adsorption and desorption steps.
5. Transport and physical properties are independent

of the temperature.
6. Competitive adsorption behaviors are described by

the Langmuir equation for mixture gas.
7. The adsorption rate is approximated by a linear

driving force (LDF) expression.

Figure 1. Four-step operation of the PSA process.

Figure 2. Expression of different conditions at each operating
step by a binary variable in gPROMS (before version 2.1).

Figure 3. Optimization approaches for cyclic adsorption processes.
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Based on the above assumptions, the mass balance
equation of each component i is given by

where Dx is the dispersion coefficient (m2/s), i is the
component index for CO2 (i ) 1) and N2 (i ) 2), yi is the
gas-phase mole fraction of component i, z is the axial
position (m), u is the superficial gas velocity (m/s), R is
the universal gas constant (J/mol/K), T is the gas
temperature within the bed (K), P is the total pressure
(Pa), εbed is the bed void, Fparticle is the particle density
(kg/m3), and qi is the solid-phase concentration (mol/
kg).

The adsorption rate can be represented by the LDF
model:

where qi
/ is the amount of adsorption of component i

in the equilibrium state of the mixture, De is the
effective diffusivity (m2/s), and Rparticle is the particle
radius (m).

The following Langmuir isotherm can describe the
adsorption equilibrium.

The isotherm parameters are functions of tempera-
ture and are expressed by

The values of these parameters are calculated by
employing a nonlinear regression method and are listed
in Table 2. Figure 4 shows that the experimental data17

have a good agreement with the Langmuir isotherms
obtained in this study. Moreover, Figure 4 shows that
the adsorbent (zeolite 13X) has a very high selectivity
of CO2 over N2.

Table 1. Basic Simulation Conditions of the PSA Model

parameter value

bed length (L) 1 m
bed radius (Rbed) 1.1 × 10-2 m
pore diameter (Dpore) 1.0 × 10-9 m
particle radius (Rparticle) 1.0 × 10-3 m
bed density (Fbed) 1.06 × 103 kg/m3

wall density (Fwall) 7.8 × 103 kg/m3

bed void (εbed) 0.348
particle density (Fparticle) 1.87 × 103 kg/m3

R 8.314 J/mol/K
heat capacity of a solid (Cps) 504 J/kg/K
heat-transfer coefficient of the wall (Uwall) 60 J/m2/K/s
feed temperature (Tfeed) 313.15 K
wall temperature (Twall) 313.15 K
feed pressure (Pfeed) 2.56 atm
purge pressure (Ppurge) 1.1 atm
atmospheric pressure (Patm) 1 atm
adsorption gas velocity (ufeed) 2.6 × 10-2 m/s
regeneration gas velocity (ureg) -d.3 × 10-3 m/s
pressurization time (tP) 10 s
adsorption time (tA) 50 s
depressurization time (tDP) 10 s
regeneration time (tR) 50 s

Table 2. Values of Parameters of the Langmuir Isotherm

CO2 N2

m1 -2 580 917.266 327 981 -9.3717 × 10-6

m2 -284.046 688 8 1.031 × 10-7

m3 8 641 161.673 977 85 -2.135 × 10-10

m4 -0.039 301 094 0
n1 -0.466 430 081 578 747 4.270 × 10-7

n2 -290.086 874 2 1.289 × 10-7

n3 0.555 476 570 130 020 7 -8.29 × 10-2

n4 -0.035 944 714 946 618 3.23 × 102
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Figure 4. Adsorption isotherms at different temperatures on
zeolite 13X.
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The following energy balance for the column is neces-
sary, because the bed is nonisothermal in the bulk
separation.

where εt is the total void fraction, Fgas is the gas density
(kg/m3), Cpg is the heat capacity of the gas (J/kg/K), Fbed
is the bed density (kg/m3), Cps is the heat capacity of
the adsorbent (J/kg/K), KL is the effective axial thermal
conductivity (J/m/s/K), ∆Hi is the isosteric heat of
adsorption (J/mol) of component i, Rbed is the bed radius
(m), hi is the heat-transfer coefficient (J/m2/s/K), and
Twall is the column wall temperature (K). The pressure
drop can be described by Darcy’s law18 with the as-
sumption of the laminar flow of gas through the bed

where µ is the gas viscosity (kg/m/s) and Dparticle is the
particle diameter (m). The isosteric heat of adsorption
is calculated by using the Clausius-Clapeyron equation
as the follows:

The boundary conditions for the PSA operation are
shown in Table 3. Table 4 lists the mole flux variables
(Feed, Product, Exhaust, and PurgeFeed) to calculate
the performances such as purities and recoveries.
Consequently, the purities and recoveries of CO2 (i )
1) and N2 (i ) 2) are given by

The power is calculated by

where Patm is the atmospheric pressure (1 atm).

The average performance of the PSA is evaluated by
the following criteria:

where tP is the pressurization time, tA is the adsorption
time, tDP is the depressurization time, tR is the regen-
eration time, and tcycle is the cycle time that is the sum
of the each operating step time (tcycle ) tP + tA + tDP +
tR).

This mathematical formulation consists of partial
differential equations, algebraic equations, and integral
equations for the mass balance, the Langmuir isotherm
equation, and the performance measure, respectively.
In addition, the boundary conditions at the end of the
bed change abruptly and periodically during the operat-
ing cycle. In this study, the method of lines (MOL)21 and
finite difference method (FDM) are adopted to convert
the PDAE system to a differential algebraic equation
(DAE) system. For dynamic simulation, integration over
time is performed by a DAE integrator in gProms based
on backward differentiation formulas (BDF). The main
advantage of this method is that the DAE integrator
automatically controls the integration error for all
variables.22

2.2. CSS. The following statement specifies the CSS
of the PSA process: The spatial bed profiles must be
identical at the beginning and end of the cycle. That is
to say, the initial profiles are generally determined by
eq 17a-c that defines CSS.
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Table 3. Boundary Conditions of Each Operating Step
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For the spatial profiles of the variables in z (yi, qi, and
T), this study employed the following parametrization
to describe the initial conditions for these profiles and
capture their desired shapes.

The ranges of the parameters (ka, kb, kc, and kd) in the
optimization are decided by considering the profiles of
q|t)tcycle, y|t)tcycle, and T|t)tcycle at CSS, resulting from
successive substitution (SS) from the first cycle to the
500th cycle (≈CSS), and the values of the parameters
are determined from the optimization to satisfy the CSS
conditions (eq 17a-c). The basic conditions for the
simulation of the SS method are listed in Table 1. This
work employs the following constraints for the optimi-
zation at CSS, and the bed profiles at initial time are
determined through the optimization, with the following
bounds on the variables: ka,q1 ∈ [0.1, 10], kb,q1 ∈ [-5,
-0.1], kc,q1 ∈ [-1, -0.001], kd,q1 ∈ [0.05, 4], ka,q2 ∈ [0.001,
1], kb,q2, kd,y2 ∈ [0.01, 10], kc,q2, kc,y2 ∈ [-0.1, -0.001], kd,q2∈ [0.05, 0.4], ka,y2 ∈ [0, 0.9], kb,y2, kd,T ∈ [0.01, 5], ka,T ∈
[300, 315], kb,T ∈ [0.5, 3], and kc,T ∈ [-0.5, -0.05]. The
CSS conditions are given as constraints in the optimiza-
tion model, and the following equations are used to
determine CSS for the optimization.

where ε is a small tolerance (ε ∼ 10-3). Because of the
parametrization of the bed profiles (18) and the con-

straints (19), the converged CSS may not be as accurate
as the approach in work by Jiang et al.16 This stems
from the fact that their profiles can be specified freely
at each node point in the MOL and the CSS conditions
are satisfied at each node point, where the CSS condi-
tions are derived from the MOL. Nevertheless, through
considerable evaluation, we found that this approach
yields both reasonable and efficient solutions for opti-
mization in the framework of gPROMS. Figures 5-7
show the CSS behaviors of the variables (q, y, T)
obtained by the optimization cases in this study.

2.3. Overall Optimization Strategy. For the opti-
mization of a periodic adsorption process, CSS requires
the initial and final conditions of a cycle to be identical.
Traditionally CSS has been determined through the SS

Table 4. Mole Flux Variables at Each Operating Step

pressurization adsorption depressurization regeneration
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Figure 5. CSS behaviors of solid-phase concentration (q1, adsorp-
tion amount of CO2; q2, adsorption amount of N2).
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scheme. The SS scheme is the repeated dynamic simu-
lation of each step over the PSA cycle. This corresponds
to the way that PSA units operate in practice to obtain
CSS. With SS the number of simulation cycles to reach
CSS may be very large, and the rate of convergence on
CSS may be enhanced by making use of a quasi-Newton

or Newton method. The Newton-type approach is desir-
able if it reduces iteration numbers significantly com-
pared to the SS scheme. However, this Newton-type
method often requires substantially increased compu-
tational time for each iteration.4,6 Moreover, it is much
more difficult to optimize a cyclic operating system,
especially in a spatially distributed system, than to
simulate the system. The spatially distributed model
can be lumped into a differential and algebraic equation
(DAE) system to solve the difficulty. Optimization of
DAE systems has been extensively studied and can be
solved by employing a sequential or simultaneous
approach. The simultaneous CD approach attains a
significant improvement in computational time, even
though the model size is comparatively large. However,
in simulation and optimization, the CD model is more
difficult to converge for complex models than a SD
model, which discretizes only a spatial domain, and the
simulation of the CD model can produce different results
because SD models employ variable time steps (continu-
ous time domain) while here the CD model adopts a
fixed time grid (discrete time domain). In section 3 we
discuss the characteristics of the CD method and
compare the optimization with the SD method using an
RPSA example. Instead, we adopt an SD approach for
the PSA system optimization and CSS is determined
directly as a constraint in the optimization model.

Based on the dynamic simulation, the optimization
is performed by the dynamic optimizer, gOPT in
gProms.19,20 This converts the optimization problem to
a nonlinear programming (NLP) problem using a control
vector parametrization (CVP) technique, with a succes-
sive quadratic programming (SQP) algorithm as imple-
mented in the SRQPD code.23 The procedure for this
work is as follows:

(1) Formulate the model using the SD approach,
(2) Describe the different boundary conditions at each

operating step by using binary variables instead of a
Case statement. (See Table 3. Case statements are not
supported for optimization in gPROMS before version
2.1, although they are supported for more recent ver-
sions, where BVEs are not necessary.)

(3) Add the CSS condition (19) as the inequality
constraint.

(4) Perform the optimization using gOPT in gProms.
The main advantages of this method are as follows:

(i) the model is robust for the simulation and optimiza-
tion calculations; (ii) the model is easier to converge and
initialize and more reliable to solve than CD models for
simulation and optimization, and (iii) performance
values calculated from optimal decision variables through
optimization are the same as those through simulation.

The simulation time of the binary variable model is
similar to that of the general model using case state-
ments on a Pentium III Linux machine with dual CPU
(800 MHz), and the simulation results are exactly the
same. The BVE method based on the SD approach is
described and compared to that of the CD approach in
Figures 2 and 3 and in section 3.

3. Optimization Results

To illustrate the benefits of the SD approach, we first
present a comparison with the CD approach on a small
RPSA process for oxygen recovery from air. Following
this example, we consider two optimization cases for
CO2 sequestration.

Figure 6. CSS behaviors of gas-phase mole fraction (y1, mole
fraction of CO2; y2, mole fraction of N2).

Figure 7. CSS behaviors of gas temperature.

F



3.1. Comparison of the CD and Binary Variable
Expression (BVE) Methods. The CD and SD are
compared by taking an RPSA example process,24 which
separates oxygen from the air, with operating steps
consisting of pressurization and depressurization. The
model for this example is given in Table 5. We per-
formed the simulation in gPROMS by using both CD
and SD methods. Operating step change conditions are
expressed by binary variables or the Case statement in
the SD method and by time domain discretization in
the CD method. Table 6 shows the calculation time of
these simulations. The computation of the CD method
is much faster than that of the SD approach, and the
Case expression and the BVE have similar calculation
speeds in the simulation. However, as shown in Figure
8, the CD approach has results different from those of
the SD method, because of a less accurate discretization.
On the other hand, the simulation result of the BVE
model is the same as that of the Case statement
expression.

This work treats the optimization of only the first
cyclic pass of the RPSA process in order to check the
difference of the BVE and CD models. The optimization
formulation is

Here, we consider

Table 7 compares the optimization results of the two
models. Though the optimization with the CD model is
faster than that with the BVE model, it is more difficult

Figure 8. Comparison of simulation results between SD and CD.

Table 5. RPSA Model Equations12
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Table 6. Total CPU Time (s) for Simulation of Each Case
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to converge reliably, as is seen in Table 7. Consequently,
the BVE model has an advantage over the CD model in
the optimization of cyclic adsorption processes.

3.2. PSA Optimization for CO2 Sequestration. We
now consider two optimization cases for the sequestra-
tion of CO2. The objective function and constraints of
each case are the same except for the “Power” con-
straint. The objective function is to increase the purities
of N2 and CO2. The optimization model is the following:

Equations 1-12, 18a-c, and 19a-d and equations of
Tables 3 and 4 are also used.

The above Purityi (i ) CO2 and N2) constraints given
by eqs 8 and 9 are calculated at the end of a given cycle.

In the first case, the power constraint is given by eq
23l for Power ) 0.6 J/s. The optimal results of the first
case are listed in Table 8. The optimal feed pressure is
1.84 atm, the optimal purge pressure is 1.10 atm, the
optimal bed length is 0.98 m, the optimal gas velocities
during adsorption and regeneration are 1.28 × 10-2 and
-0.001 m/s, respectively, and the optimal cycle time is
205.673 s. Consequently, the average performance is
calculated from the optimal decision variables. The
computation time for the optimization is 3177.9 CPU s
on a Pentium III Linux machine with dual 800 MHz
CPU.

In the second case, the required power is set to be
less than 0.5 J/s (eq 23a). The optimal decision values
are shown in Table 9. The optimal bed length is 0.91
m, the optimal feed pressure is 1.70 atm, the optimal

purge pressure is 0.88 atm, the gas velocities of adsorp-
tion and desorption are 1.35 × 10-2 and -1.05 × 10-3

m/s, respectively, and the optimal cycle time is 308.605
s. The average purities and recoveries of CO2 and N2
are also obtained as shown in Table 7. The total CPU
time for the optimization is 5273.3 CPU s on the same
machine (Pentium III Linux machine with dual CPU
(800 MHz)).

Judging from extensive sensitivity studies about the
optimum solutions, the required power is affected only
by the feed pressure and adsorption gas velocity and
not by the bed length, purge pressure, and operating
step times; it increases as the adsorption gas velocity
and feed pressure increase. The purity of CO2 is
improved when the purge operating times (the depres-
surization and regeneration times) increase. The purity
of CO2 decreases as the purge pressure and linear gas
velocity of the regeneration step increase. The recovery

Table 7. Optimization Results of the BVE and CD Models in Each Purity Constraint

model
type

purity
constraint L (m)

Pfeed
(atm)

tP
(s)

tDP
(s) purity

power
(J/s)

objective
(J/s)

total CPU
time (s)

BVE (SD) purity > 0.35 0.286 2.47 10 0.1 0.35 2.549 7.282 10.7
purity > 0.30 0.231 1.86 10 0.1 0.30 1.254 4.180 15.1
purity > 0.25 0.183 1.35 9.92 0.1 0.25 0.420 1.681 9.9

CD purity > 0.30 error in optimization
purity > 0.25 error in optimization
purity > 0.35 1.500 4.08 4.36 7.28 0.25 7.053 28.213 7.0

Table 8. Optimization Results of the First Case (Power e
0.6 J/s)a

variable result

bed length (L) 0.976 21 m
feed pressure (Pfeed) 1.842 27 atm
purge pressure (Ppurge) 1.099 54 atm
linear gas velocity of adsorption step (ufeed) 1.2834 × 10-2 m/s
linear gas velocity of desorption step (ureg) -1.00 × 10-3 m/s
pressurization time (tP) 10.00 s
adsorption time (tA) 49.00 s
depressurization time (tDP) 10.00 s
regeneration time (tR) 136.678 s
average purity of CO2 (PurityCO2,Ave) 0.244 188
average recovery of CO2 (RecoveryCO2,Ave) 0.094 673
average purity of N2 (PurityN2,Ave) 0.999 648 796
average recovery of N2 (RecoveryN2,Ave) 0.754 791
power 0.6 J/s

a Total CPU time for optimization is 3177.9 s on a Pentium III
Linux machine with dual CPU (800 MHz) [SRQPD optimizer
statistics]. Number of optimization iterations: 82. Number of line
search steps: 136.

Table 9. Optimization Results of the Second Case
(Power e 0.5 J/s)a

variable result

bed length (L) 0.909 834 m
feed pressure (Pfeed) 1.7 atm
purge pressure (Ppurge) 0.881 645 atm
linear gas velocity of adsorption step (ufeed) 1.350 39 × 10-2 m/s
linear gas velocity of desorption step (ureg) -1.046 × 10-3 m/s
pressurization time (tP) 9.381 21 s
adsorption time (tA) 56.3994 s
depressurization time (tDP) 1 s
regeneration time (tR) 241.824 s
average purity of CO2 (PurityCO2,Ave) 0.149 254
average recovery of CO2 (RecoveryCO2,Ave) 0.074 332
average purity of N2 (PurityN2,Ave) 0.997 653
average recovery of N2 (RecoveryN2,Ave) 0.791 963
power 0.5 J/s

a Total CPU time for optimization is 5273.3 s on a Pentium III
Linux machine with dual CPU (800 MHz) [SRQPD optimizer
statistics]. Number of optimization iterations: 125. Number of line
search steps: 242.

Max PurityN2
+ PurityCO2

(22)

Subject to

0.15 m e L e 2 m (23a)

1.7 atm e Pfeed e 20 atm (23b)

0.7 atm e Ppurge e 1.1 atm (23c)

0.001 m/s e ufeed e 0.02 m/s (23d)

-0.01 m/s e ureg e -0.001 m/s (23e)

1 s e tP e 10 s (23f)

49 s e tA e 990 s (23g)

1 s e tDP e 10 s (23h)

49 s e tR e 990 s (23i)

PurityCO2
g 15% (23j)

PurityN2
g 85% (23k)

Required Power e Power (J/s) (23l)

H



of CO2 increases, as the purge pressure, regeneration
gas velocity, and purge step times increase, and it
decreases accordingly as the feed pressure, adsorption
gas velocity, and feeding operation times (the pres-
surization and adsorption times) increase. Though the
purity of N2 is hardly affected by the decision variables
and is over 99%, it is slightly enhanced when the bed
length, feed pressure, and pressurization time increase.
The purity of N2 deteriorates when the adsorption gas
velocity increases. The recovery of N2 decreases as the
bed length, feed pressure, adsorption gas velocity, and
pressurization time increase and the adsorption time
decreases.

The optimal results might be affected by the initial
guess and bounds of the parameters (ka, kb, kc, and kd)
for the optimization, determined by considering the
simulation results (first cycle ∼ CSS) based on the
conditions in Table 1. Because the optimization toler-
ance is 0.001, the optimal decision variables were found
even if the objective value still increased with a very
small step. Therefore, it is very important to determine
the optimization tolerance and the initial conditions
reasonably, as was confirmed in this work.

4. Conclusions

A mathematical model of the PSA process using
zeolite 13X as an adsorbent and operated with four steps
(pressurization, adsorption, depressurization, and re-
generation) is formulated by using PDAEs that consider
the dynamic variation and spatial distribution of prop-
erties within the adsorption column. For the optimiza-
tion, we adopt the SD model instead of the CD model
and set the CSS condition as the constraint with a small
tolerance (ε) in the gPROMS modeling system. The
decision variables are the bed length, feed pressure,
purge pressure, gas velocity, and each operating step
time, which are determined to optimize desired objective
functions. The objective here is to maximize the purities
of N2 and CO2. In the PSA system using zeolite 13X,
the optimization results show that the optimal feed
pressure should not be high, while other adsorbents
such as zeolite 5A require a high feed pressure to obtain
a high-purity product.9,10 Consequently, the PSA process
using zeolite 13X can give us a high purity of the
components with low energy cost.

Finally, this paper focuses on the optimization of the
bench-scale PSA model. In future work, the scale-up of
this model will be performed and economic objectives
will also be treated.
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Nomenclature

ai, bi ) Langmuir constants (1/Pa)
Cpg ) heat capacity of the gas (J/kg/K)
Cps ) heat capacity of the adsorbent (J/kg/K)
De ) effective diffusivity (m2/s)
Dparticle ) particle diameter (m)
Dx ) dispersion coefficient (m2/s)
hi ) heat-transfer coefficient (J/m2/s/K)
i ) component identifier (i ) 1 denotes CO2, and i ) 2 is

N2)

ka ) parameter calculated for the initial condition to satisfy
the CSS condition

kb ) parameter calculated for the initial condition to satisfy
the CSS condition

kc ) parameter calculated for the initial condition to satisfy
the CSS condition

kd ) parameter calculated for the initial condition to satisfy
the CSS condition

KL ) effective axial thermal conductivity (J/m/s/K)
P ) total pressure (Pa)
Pfeed ) feed pressure (Pa)
Pi ) partial pressure (Pa)
Ppurge ) purge pressure (Pa)
qi ) solid-phase concentration (mol/kg)
qi
/ ) amount of adsorption of component i in the equilib-
rium state of the mixture

R ) universal gas constant (J/mol/K)
Rbed ) bed radius (m)
Rparticle ) particle radius (m)
t ) time (s)
tcycle ) cycle time (s)
tP ) pressurization time (s)
tA ) adsorption time (s)
tDP ) depressurization time (s)
tR ) regeneration time (s)
T ) gas temperature within the bed (K)
Twall ) column wall temperature (K)
u ) superficial gas velocity (m/s)
ufeed ) feed gas velocity (m/s)
ureg ) regeneration gas velocity (m/s)
yf ) feed mole fraction
yi ) mole fraction of component i
z ) axial position (m)

Greek Letters

ε ) small value
µ ) gas viscosity (kg/m/s)
Fbed ) bed density (kg/m3)
εbed ) bed void
Fgas ) gas density (kg/m3)
∆Hi ) isosteric heat of adsorption (J/mol) of component i
Fparticle ) particle density (kg/m3)
εt ) total void fraction
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